Error Correcting Codes: Combinatorics, Algorithms and Applications 1 Strongly Explicit Construction

نویسندگان

  • Atri Rudra
  • Kanke Gao
چکیده

In the last lecture, we introduced code concatenation, where we compose an outer code Cout with an inner code Cin. We derived the Zyablov bound by picking Cout on the Singleton bound and Cin on the GV bound. We also presented a polynomial time construction of a code that achieves the Zyablov bound (and hence, an asymptotically good code). A somewhat unsatisfactory aspect of this construction was the brute force search for a suitable inner code (which lead to the polynomial construction time). In today’s lecture, we will study a strongly explicit construction of an asymptotically good code.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correcting Codes : Combinatorics , Algorithms and Applications ( Fall 2007 ) Lecture 24 : Code concatenation

Recall the following question we have encountered before: Question 0.1. Is there an explicit asymptotically good code? (that is, rate R > 0 and relative distance δ > 0 for small q). Here, explicit means: (i) polynomial time construction (of some representation of the code), (ii) “super” explicit (like description of RS code). We will answer the question at least in the sense of explicit codes o...

متن کامل

An enumeration of 1-perfect binary codes

We enumerate the extended perfect I-error correcting binary codes of length 16 which can be constructed by the concatenation or doubling construction. In the process, we establish some properties of these codes and consider algorithms that effectively establish the nonequivalence of these codes.

متن کامل

A note on an upper bound of traceability codes

Blackburn, Etzion and Ng showed in a paper in 2010 that there exist 2-traceability codes of length l of size cqdl/4e, where the constant c depends only on l. The question remains as to what the best possible c may be. A well-known construction using error-correcting codes with high minimum distance gives 2-traceability codes of size cqdl/4e with c ≥ 1. However, in the same paper, an example of ...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

Error-Correcting Codes for Semiconductor Memory Applications: A State-of-the-Art Review

This paper presents a state-of-the-art review of error-correcting codes for computer semiconductor memory applications. The construction of four classes of error-correcting codes appropriate for semiconductor memory designs is described, and for each class of codes the number of check bits required for commonly used data lengths is provided. The implementation aspects of error correction and er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007